3.497 \(\int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=124 \[ \frac {(5 A-3 B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a d}-\frac {3 (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}+\frac {(5 A-3 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d} \]

[Out]

-3*(A-B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+1/3*(5*A-3*
B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-(A-B)*cos(d*x+c)^
(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))+1/3*(5*A-3*B)*sin(d*x+c)*cos(d*x+c)^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2954, 2977, 2748, 2639, 2635, 2641} \[ \frac {(5 A-3 B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a d}-\frac {3 (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}+\frac {(5 A-3 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x]),x]

[Out]

(-3*(A - B)*EllipticE[(c + d*x)/2, 2])/(a*d) + ((5*A - 3*B)*EllipticF[(c + d*x)/2, 2])/(3*a*d) + ((5*A - 3*B)*
Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a*d) - ((A - B)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2954

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx &=\int \frac {\cos ^{\frac {3}{2}}(c+d x) (B+A \cos (c+d x))}{a+a \cos (c+d x)} \, dx\\ &=-\frac {(A-B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac {\int \sqrt {\cos (c+d x)} \left (-\frac {3}{2} a (A-B)+\frac {1}{2} a (5 A-3 B) \cos (c+d x)\right ) \, dx}{a^2}\\ &=-\frac {(A-B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac {(5 A-3 B) \int \cos ^{\frac {3}{2}}(c+d x) \, dx}{2 a}-\frac {(3 (A-B)) \int \sqrt {\cos (c+d x)} \, dx}{2 a}\\ &=-\frac {3 (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(5 A-3 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}-\frac {(A-B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac {(5 A-3 B) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a}\\ &=-\frac {3 (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(5 A-3 B) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a d}+\frac {(5 A-3 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}-\frac {(A-B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.60, size = 1239, normalized size = 9.99 \[ \text {result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x]),x]

[Out]

(((-3*I)/4)*A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*(A + B*Sec[c + d*x])*((2*E^((2*I)*d*x)*Hypergeometric2F1[
1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*
I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I
)*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[
c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 +
 E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x
))*Sin[c])))/((B + A*Cos[c + d*x])*(a + a*Sec[c + d*x])) + (((3*I)/4)*B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]
*(A + B*Sec[c + d*x])*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2
)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*C
os[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) -
(2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c
] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])
/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/((B + A*Cos[c + d*x])*(a + a*Sec[c + d*
x])) + (Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x])*((-2*(-A + B)*(1 + 2*Cos[c])*Csc[c])/d +
(4*A*Cos[d*x]*Sin[c])/(3*d) - (2*Sec[c/2]*Sec[c/2 + (d*x)/2]*(-(A*Sin[(d*x)/2]) + B*Sin[(d*x)/2]))/d + (4*A*Co
s[c]*Sin[d*x])/(3*d)))/((B + A*Cos[c + d*x])*(a + a*Sec[c + d*x])) - (5*A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Hyperg
eometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x])*Sec[d*x - ArcTan[Cot
[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1
+ Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])) + (B*Cos[c/2
+ (d*x)/2]^2*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c
+ d*x])*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x
 - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Se
c[c + d*x]))

________________________________________________________________________________________

fricas [F]  time = 0.44, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (B \cos \left (d x + c\right ) \sec \left (d x + c\right ) + A \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c)*sec(d*x + c) + A*cos(d*x + c))*sqrt(cos(d*x + c))/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}{a \sec \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*cos(d*x + c)^(3/2)/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 4.32, size = 262, normalized size = 2.11 \[ -\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (5 A \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 A \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 B \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 B \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-8 A \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (18 A -6 B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-7 A +3 B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{3 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x)

[Out]

-1/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*A*EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2))-3*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-9*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-8*A*sin(1/2*d*x+1
/2*c)^6+(18*A-6*B)*sin(1/2*d*x+1/2*c)^4+(-7*A+3*B)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}{a \sec \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*cos(d*x + c)^(3/2)/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )}{a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(3/2)*(A + B/cos(c + d*x)))/(a + a/cos(c + d*x)),x)

[Out]

int((cos(c + d*x)^(3/2)*(A + B/cos(c + d*x)))/(a + a/cos(c + d*x)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________